Exercise XIII
- Rank asymptotic complexities from smallest to largest.
Exercise For each of the $T(n)$ running time listed below, figure out the asymptotic runtime and express it in Big-Oh notation. Then rank the functions in growth rate order, starting with the slowest growth rate (i.e those resulting in a fast runtime), and ending with the fastest growth rate (worst runtime). If two functions have the same asymptotic runtime, then rank them based on the original expressions (including constants).
$T(n)$ | Big-Oh | Rank |
---|---|---|
$\left ( \lg \frac{n}{4} \right )^3$ | ||
$(n^2-4)/(n+2)$ | ||
$\left ( 3n + \lg n \right )^2$ | ||
$2 \lg n^2$ | ||
$\left ( 2^n \right )^2 + \lg n$ | ||
$n^2 \lg 16$ | ||
$2n\lg\lg n$ | ||
$4n^2+n(10 + \lg n)$ |
Solution
$T(n)$ | Big-Oh | Rank |
---|---|---|
$\left ( \lg \frac{n}{4} \right )^3$ | $\left ( \lg n - \lg 4 \right )^3 = \left ( \lg n - 2 \right )^3 \in \Omicron(\lg^3 n)$ | 2 |
$(n^2-4)/(n+2)$ | $(n-2)(n+2)/(n+2) \in \Omicron(n)$ | 3 |
$\left ( 3n + \lg n \right )^2$ | $9n^2+\lg^2 n + 6n\lg n \in \Omicron(n^2)$ | 7 |
$2 \lg n^2$ | $4 \lg n \in \Omicron(\lg n)$ | 1 |
$\left ( 2^n \right )^2 + \lg n$ | $4^n+\lg n \in \Omicron(4^n)$ | 8 |
$n^2 \lg 16$ | $4n^2 \in \Omicron(n^2)$ | 5 |
$2n\lg\lg n$ | $\Omicron(n\lg\lg n)$ | 4 |
$4n^2+n(10 + \lg n)$ | $4n^2+10n+n\lg n \in \Omicron(n^2)$ | 6 |
Resources
Logarithmic identities are essential for solving the above exercise.